""" ========================================= Face completion with multi-output forests ========================================= This example shows the use of multi-output forests to complete images. The goal is to predict the lower half of a face given its upper half. The first row of images shows true faces. The second half illustrates how the forest completes the lower half of those faces. """ print __doc__ import numpy as np import pylab as pl from sklearn.datasets import fetch_olivetti_faces from sklearn.ensemble import ExtraTreesRegressor # Load the faces datasets data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people n_pixels = data.shape[1] X_train = train[:, :int(0.5 * n_pixels)] # Upper half of the faces Y_train = train[:, int(0.5 * n_pixels):] # Lower half of the faces X_test = test[:, :int(0.5 * n_pixels)] Y_test = test[:, int(0.5 * n_pixels):] # Build a multi-output forest forest = ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0) forest.fit(X_train, Y_train) Y_test_predict = forest.predict(X_test) # Plot the completed faces n_faces = 5 image_shape = (64, 64) pl.figure(figsize=(2. * n_faces, 2.26 * 2)) pl.suptitle("Face completion with multi-output forests", size=16) for i in xrange(1, 1 + n_faces): face_id = np.random.randint(X_test.shape[0]) true_face = np.hstack((X_test[face_id], Y_test[face_id])) completed_face = np.hstack((X_test[face_id], Y_test_predict[face_id])) pl.subplot(2, n_faces, i) pl.axis("off") pl.imshow(true_face.reshape(image_shape), cmap=pl.cm.gray, interpolation="nearest") pl.subplot(2, n_faces, n_faces + i) pl.axis("off") pl.imshow(completed_face.reshape(image_shape), cmap=pl.cm.gray, interpolation="nearest") pl.show()