""" =============================== Ordinary Least Squares with SGD =============================== Simple Ordinary Least Squares example with stochastic gradient descent, we draw the linear least squares solution for a random set of points in the plane. """ print __doc__ import pylab as pl from sklearn.linear_model import SGDRegressor from sklearn.datasets.samples_generator import make_regression # this is our test set, it's just a straight line with some # gaussian noise X, Y = make_regression(n_samples=100, n_features=1, n_informative=1, random_state=0, noise=35) # run the classifier clf = SGDRegressor(alpha=0.1, n_iter=20) clf.fit(X, Y) # and plot the result pl.scatter(X, Y, color='black') pl.plot(X, clf.predict(X), color='blue', linewidth=3) pl.show()