.. _example_manifold_plot_lle_digits.py: ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on wich we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-seperable. .. rst-class:: horizontal * .. image:: images/plot_lle_digits_9.png :scale: 47 * .. image:: images/plot_lle_digits_1.png :scale: 47 * .. image:: images/plot_lle_digits_8.png :scale: 47 * .. image:: images/plot_lle_digits_3.png :scale: 47 * .. image:: images/plot_lle_digits_4.png :scale: 47 * .. image:: images/plot_lle_digits_5.png :scale: 47 * .. image:: images/plot_lle_digits_2.png :scale: 47 * .. image:: images/plot_lle_digits_7.png :scale: 47 * .. image:: images/plot_lle_digits_6.png :scale: 47 **Script output**:: Computing random projection Computing PCA projection Computing LDA projection Computing Isomap embedding Done. Computing LLE embedding Done. Reconstruction error: 1.28513e-06 Computing modified LLE embedding Done. Reconstruction error: 0.359893 Computing Hessian LLE embedding Done. Reconstruction error: 0.211912 Computing LTSA embedding Done. Reconstruction error: 0.212075 Computing MDS embedding Done. Stress: 141100635.430416 Computing Totally Random Trees embedding Computing Spectral embedding **Python source code:** :download:`plot_lle_digits.py ` .. literalinclude:: plot_lle_digits.py :lines: 14- **Total running time of the example:** 20.95 seconds