..
We are putting the title as a raw HTML so that it doesn't appear in
the contents
.. raw:: html
scikit-learn: machine learning in Python
..
Here we are building a banner: a javascript selects randomly 4 images in
the list
.. only:: html
.. |banner1| image:: auto_examples/svm/images/plot_oneclass_1.png
:height: 139
:target: auto_examples/svm/plot_oneclass.html
.. |banner2| image:: auto_examples/cluster/images/plot_ward_structured_vs_unstructured_2.png
:height: 139
:target: auto_examples/cluster/plot_ward_structured_vs_unstructured.html
.. |banner3| image:: auto_examples/gaussian_process/images/plot_gp_regression_1.png
:height: 139
:target: auto_examples/gaussian_process/plot_gp_regression.html
.. |banner4| image:: auto_examples/cluster/images/plot_lena_ward_segmentation_1.png
:height: 139
:target: auto_examples/cluster/plot_lena_ward_segmentation.html
.. |banner5| image:: auto_examples/svm/images/plot_svm_nonlinear_1.png
:height: 139
:target: auto_examples/svm/plot_svm_nonlinear.html
.. |banner6| image:: auto_examples/applications/images/plot_species_distribution_modeling_1.png
:height: 139
:target: auto_examples/applications/plot_species_distribution_modeling.html
.. |banner7| image:: auto_examples/gaussian_process/images/plot_gp_probabilistic_classification_after_regression_1.png
:height: 139
:target: auto_examples/gaussian_process/plot_gp_probabilistic_classification_after_regression.html
.. |banner8| image:: auto_examples/ensemble/images/plot_forest_importances_faces_1.png
:height: 139
:target: auto_examples/ensemble/plot_forest_importances_faces.html
.. |banner9| image:: auto_examples/svm/images/plot_weighted_samples_1.png
:height: 139
:target: auto_examples/svm/plot_weighted_samples.html
.. |banner10| image:: auto_examples/linear_model/images/plot_sgd_weighted_samples_1.png
:height: 139
:target: auto_examples/linear_model/plot_sgd_weighted_samples.html
.. |banner11| image:: auto_examples/cluster/images/plot_kmeans_digits_1.png
:height: 139
:target: auto_examples/cluster/plot_kmeans_digits.html
.. |banner12| image:: auto_examples/decomposition/images/plot_faces_decomposition_2.png
:height: 139
:target: auto_examples/decomposition/plot_faces_decomposition.html
.. |banner13| image:: auto_examples/decomposition/images/plot_faces_decomposition_3.png
:height: 139
:target: auto_examples/decomposition/plot_faces_decomposition.html
.. |banner14| image:: auto_examples/images/plot_lda_qda_1.png
:height: 139
:target: auto_examples/plot_lda_qda.html
.. |banner15| image:: auto_examples/cluster/images/plot_cluster_comparison_1.png
:height: 139
:target: auto_examples/cluster/plot_cluster_comparison.html
.. |center-div| raw:: html
.. |end-div| raw:: html
|center-div| |banner1| |banner2| |banner3| |banner4| |banner5| |banner6| |banner7| |banner8| |banner9| |banner10| |banner11| |banner12| |banner13| |banner14| |end-div|
.. topic:: Easy-to-use and general-purpose machine learning in Python
Scikit-learn integrates **machine learning** algorithms in the
tightly-knit scientific **Python** world, building upon `numpy
`_, `scipy `_, and
`matplotlib `_. As a machine-learning module,
it provides versatile tools for data mining and analysis in any field
of science and engineering. It strives to be **simple and
efficient**, accessible to everybody, and reusable in various
contexts.
.. raw:: html
**License:** Open source, commercially usable: **BSD license** (3 clause)
.. raw:: html
Documentation for scikit-learn **version** |release|. For other versions and
printable format, see :ref:`documentation_resources`.
.. raw:: html
.. include:: includes/big_toc_css.rst
User Guide
==========
.. toctree::
:numbered:
user_guide.rst
Example Gallery
===============
.. toctree::
:maxdepth: 2
auto_examples/index
Development
===========
.. toctree::
:numbered:
developers/index
developers/performance
developers/utilities
developers/debugging
developers/maintainer
about
.. toctree::
:hidden:
support
whats_new
presentations