Classification of text documents using sparse features

This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices.

The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached.

The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier.

Python source code: document_classification_20newsgroups.py

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Mathieu Blondel <mathieu@mblondel.org>
#         Lars Buitinck <L.J.Buitinck@uva.nl>
# License: Simplified BSD

import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import pylab as pl

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.utils.extmath import density
from sklearn import metrics


# Display progress logs on stdout
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s %(levelname)s %(message)s')


# parse commandline arguments
op = OptionParser()
op.add_option("--report",
              action="store_true", dest="print_report",
              help="Print a detailed classification report.")
op.add_option("--chi2_select",
              action="store", type="int", dest="select_chi2",
              help="Select some number of features using a chi-squared test")
op.add_option("--confusion_matrix",
              action="store_true", dest="print_cm",
              help="Print the confusion matrix.")
op.add_option("--top10",
              action="store_true", dest="print_top10",
              help="Print ten most discriminative terms per class"
                   " for every classifier.")
op.add_option("--all_categories",
              action="store_true", dest="all_categories",
              help="Whether to use all categories or not.")
op.add_option("--use_hashing",
              action="store_true",
              help="Use a hashing vectorizer.")
op.add_option("--n_features",
              action="store", type=int, default=2 ** 16,
              help="n_features when using the hashing vectorizer.")


(opts, args) = op.parse_args()
if len(args) > 0:
    op.error("this script takes no arguments.")
    sys.exit(1)

print __doc__
op.print_help()
print


###############################################################################
# Load some categories from the training set
if opts.all_categories:
    categories = None
else:
    categories = [
        'alt.atheism',
        'talk.religion.misc',
        'comp.graphics',
        'sci.space',
    ]

print "Loading 20 newsgroups dataset for categories:"
print categories if categories else "all"

data_train = fetch_20newsgroups(subset='train', categories=categories,
                                shuffle=True, random_state=42)

data_test = fetch_20newsgroups(subset='test', categories=categories,
                               shuffle=True, random_state=42)
print 'data loaded'

categories = data_train.target_names    # for case categories == None


def size_mb(docs):
    return sum(len(s.encode('utf-8')) for s in docs) / 1e6

data_train_size_mb = size_mb(data_train.data)
data_test_size_mb = size_mb(data_test.data)

print("%d documents - %0.3fMB (training set)" % (
    len(data_train.data), data_train_size_mb))
print("%d documents - %0.3fMB (training set)" % (
    len(data_test.data), data_test_size_mb))
print "%d categories" % len(categories)
print

# split a training set and a test set
y_train, y_test = data_train.target, data_test.target

print "Extracting features from the training dataset using a sparse vectorizer"
t0 = time()
if opts.use_hashing:
    vectorizer = HashingVectorizer(stop_words='english', non_negative=True,
                                   n_features=opts.n_features)
    X_train = vectorizer.transform(data_train.data)
else:
    vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
                                 stop_words='english')
    X_train = vectorizer.fit_transform(data_train.data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration))
print "n_samples: %d, n_features: %d" % X_train.shape
print

print "Extracting features from the test dataset using the same vectorizer"
t0 = time()
X_test = vectorizer.transform(data_test.data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration))
print "n_samples: %d, n_features: %d" % X_test.shape
print

if opts.select_chi2:
    print ("Extracting %d best features by a chi-squared test" %
           opts.select_chi2)
    t0 = time()
    ch2 = SelectKBest(chi2, k=opts.select_chi2)
    X_train = ch2.fit_transform(X_train, y_train)
    X_test = ch2.transform(X_test)
    print "done in %fs" % (time() - t0)
    print


def trim(s):
    """Trim string to fit on terminal (assuming 80-column display)"""
    return s if len(s) <= 80 else s[:77] + "..."


# mapping from integer feature name to original token string
if opts.use_hashing:
    feature_names = None
else:
    feature_names = np.asarray(vectorizer.get_feature_names())


###############################################################################
# Benchmark classifiers
def benchmark(clf):
    print 80 * '_'
    print "Training: "
    print clf
    t0 = time()
    clf.fit(X_train, y_train)
    train_time = time() - t0
    print "train time: %0.3fs" % train_time

    t0 = time()
    pred = clf.predict(X_test)
    test_time = time() - t0
    print "test time:  %0.3fs" % test_time

    score = metrics.f1_score(y_test, pred)
    print "f1-score:   %0.3f" % score

    if hasattr(clf, 'coef_'):
        print "dimensionality: %d" % clf.coef_.shape[1]
        print "density: %f" % density(clf.coef_)

        if opts.print_top10 and feature_names is not None:
            print "top 10 keywords per class:"
            for i, category in enumerate(categories):
                top10 = np.argsort(clf.coef_[i])[-10:]
                print trim("%s: %s" % (
                    category, " ".join(feature_names[top10])))
        print

    if opts.print_report:
        print "classification report:"
        print metrics.classification_report(y_test, pred,
                                            target_names=categories)

    if opts.print_cm:
        print "confusion matrix:"
        print metrics.confusion_matrix(y_test, pred)

    print
    clf_descr = str(clf).split('(')[0]
    return clf_descr, score, train_time, test_time


results = []
for clf, name in (
        (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"),
        (Perceptron(n_iter=50), "Perceptron"),
        (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"),
        (KNeighborsClassifier(n_neighbors=10), "kNN")):
    print 80 * '='
    print name
    results.append(benchmark(clf))

for penalty in ["l2", "l1"]:
    print 80 * '='
    print "%s penalty" % penalty.upper()
    # Train Liblinear model
    results.append(benchmark(LinearSVC(loss='l2', penalty=penalty,
                                            dual=False, tol=1e-3)))

    # Train SGD model
    results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
                                           penalty=penalty)))

# Train SGD with Elastic Net penalty
print 80 * '='
print "Elastic-Net penalty"
results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50,
                                       penalty="elasticnet")))

# Train NearestCentroid without threshold
print 80 * '='
print "NearestCentroid (aka Rocchio classifier)"
results.append(benchmark(NearestCentroid()))

# Train sparse Naive Bayes classifiers
print 80 * '='
print "Naive Bayes"
results.append(benchmark(MultinomialNB(alpha=.01)))
results.append(benchmark(BernoulliNB(alpha=.01)))


class L1LinearSVC(LinearSVC):

    def fit(self, X, y):
        # The smaller C, the stronger the regularization.
        # The more regularization, the more sparsity.
        self.transformer_ = LinearSVC(penalty="l1",
                                      dual=False, tol=1e-3)
        X = self.transformer_.fit_transform(X, y)
        return LinearSVC.fit(self, X, y)

    def predict(self, X):
        X = self.transformer_.transform(X)
        return LinearSVC.predict(self, X)

print 80 * '='
print "LinearSVC with L1-based feature selection"
results.append(benchmark(L1LinearSVC()))


# make some plots

indices = np.arange(len(results))

results = [[x[i] for x in results] for i in xrange(4)]

clf_names, score, training_time, test_time = results
training_time = np.array(training_time) / np.max(training_time)
test_time = np.array(test_time) / np.max(test_time)

pl.title("Score")
pl.barh(indices, score, .2, label="score", color='r')
pl.barh(indices + .3, training_time, .2, label="training time", color='g')
pl.barh(indices + .6, test_time, .2, label="test time", color='b')
pl.yticks(())
pl.legend(loc='best')
pl.subplots_adjust(left=.25)

for i, c in zip(indices, clf_names):
    pl.text(-.3, i, c)

pl.show()
Previous
Next