8.6.2. sklearn.dummy.DummyRegressor¶
- class sklearn.dummy.DummyRegressor¶
DummyRegressor is a regressor that always predicts the mean of the training targets.
This regressor is useful as a simple baseline to compare with other (real) regressors. Do not use it for real problems.
Attributes
y_mean_ float or array of shape [n_outputs] Mean of the training targets. n_outputs_ int, Number of outputs. outputs_2d_ bool, True if the output at fit is 2d, else false. Methods
fit(X, y) Fit the random regressor. get_params([deep]) Get parameters for the estimator predict(X) Perform classification on test vectors X. score(X, y) Returns the coefficient of determination R^2 of the prediction. set_params(**params) Set the parameters of the estimator. - __init__()¶
x.__init__(...) initializes x; see help(type(x)) for signature
- fit(X, y)¶
Fit the random regressor.
Parameters: X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples and n_features is the number of features.
y : array-like, shape = [n_samples] or [n_samples, n_outputs]
Target values.
Returns: self : object
Returns self.
- get_params(deep=True)¶
Get parameters for the estimator
Parameters: deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- predict(X)¶
Perform classification on test vectors X.
Parameters: X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Input vectors, where n_samples is the number of samples and n_features is the number of features.
Returns: y : array, shape = [n_samples] or [n_samples, n_outputs]
Predicted target values for X.
- score(X, y)¶
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters: X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns: z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: self :