8.17.14. sklearn.linear_model.MultiTaskLasso¶
- class sklearn.linear_model.MultiTaskLasso(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False)¶
Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
The optimization objective for Lasso is:
(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21
Where:
||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}
i.e. the sum of norm of earch row.
Parameters: alpha : float, optional
Constant that multiplies the L1/L2 term. Defaults to 1.0
fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
max_iter : int, optional
The maximum number of iterations
tol : float, optional
The tolerance for the optimization: if the updates are smaller than ‘tol’, the optimization code checks the dual gap for optimality and continues until it is smaller than tol.
warm_start : bool, optional
When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution.
See also
Notes
The algorithm used to fit the model is coordinate descent.
To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran contiguous numpy array.
Examples
>>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, tol=0.0001, warm_start=False) >>> print clf.coef_ [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print clf.intercept_ [ 0.10606602 0.10606602]
Attributes
coef_ array, shape = (n_tasks, n_features) parameter vector (W in the cost function formula) intercept_ array, shape = (n_tasks,) independent term in decision function. Methods
decision_function(X) Decision function of the linear model fit(X, y[, Xy, coef_init]) Fit MultiTaskLasso model with coordinate descent get_params([deep]) Get parameters for the estimator predict(X) Predict using the linear model score(X, y) Returns the coefficient of determination R^2 of the prediction. set_params(**params) Set the parameters of the estimator. - __init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False)¶
- decision_function(X)¶
Decision function of the linear model
Parameters: X : numpy array or scipy.sparse matrix of shape (n_samples, n_features)
Returns: T : array, shape = (n_samples,)
The predicted decision function
- fit(X, y, Xy=None, coef_init=None)¶
Fit MultiTaskLasso model with coordinate descent
Parameters: X: ndarray, shape = (n_samples, n_features) :
Data
y: ndarray, shape = (n_samples, n_tasks) :
Target
coef_init: ndarray of shape n_features :
The initial coeffients to warm-start the optimization
Notes
Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a fortran contiguous numpy array if necessary.
To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.
- get_params(deep=True)¶
Get parameters for the estimator
Parameters: deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- predict(X)¶
Predict using the linear model
Parameters: X : numpy array of shape [n_samples, n_features]
Returns: C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters: X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns: z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: self :
- sparse_coef_¶
sparse representation of the fitted coef