8.19.1.8. sklearn.metrics.fbeta_score¶
- sklearn.metrics.fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average='weighted')¶
Compute the F-beta score
The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0.
The beta parameter determines the weight of precision in the combined score. beta < 1 lends more weight to precision, while beta > 1 favors precision (beta == 0 considers only precision, beta == inf only recall).
Parameters: y_true : array, shape = [n_samples]
Ground truth (correct) target values.
y_pred : array, shape = [n_samples]
Estimated targets as returned by a classifier.
beta: float :
Weight of precision in harmonic mean.
labels : array
Integer array of labels.
pos_label : int
In the binary classification case, give the label of the positive class (default is 1). Everything else but pos_label is considered to belong to the negative class. Set to None in the case of multiclass classification.
average : string, [None, ‘micro’, ‘macro’, ‘weighted’ (default)]
In the multiclass classification case, this determines the type of averaging performed on the data.
- None:
Do not perform any averaging, return the scores for each class.
- 'macro':
Average over classes (does not take imbalance into account).
- 'micro':
Average over instances (takes imbalance into account). This implies that precision == recall == F1.
- 'weighted':
Average weighted by support (takes imbalance into account). Can result in F-score that is not between precision and recall. Do not perform any averaging, return the score for each class.
Returns: fbeta_score : float (if average is not None) or array of float, shape = [n_unique_labels]
F-beta score of the positive class in binary classification or weighted average of the F-beta score of each class for the multiclass task.
References
R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-328.
http://en.wikipedia.org/wiki/F1_score
Examples
In the binary case:
>>> from sklearn.metrics import fbeta_score >>> y_pred = [0, 1, 0, 0] >>> y_true = [0, 1, 0, 1] >>> fbeta_score(y_true, y_pred, beta=0.5) 0.83... >>> fbeta_score(y_true, y_pred, beta=1) 0.66... >>> fbeta_score(y_true, y_pred, beta=2) 0.55...
In the multiclass case:
>>> from sklearn.metrics import fbeta_score >>> y_true = [0, 1, 2, 0, 1, 2] >>> y_pred = [0, 2, 1, 0, 0, 1] >>> fbeta_score(y_true, y_pred, average='macro', beta=0.5) 0.23... >>> fbeta_score(y_true, y_pred, average='micro', beta=0.5) 0.33... >>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5) 0.23... >>> fbeta_score(y_true, y_pred, average=None, beta=0.5) array([ 0.71..., 0. , 0. ])