8.19.1.16. sklearn.metrics.zero_one_loss¶
- sklearn.metrics.zero_one_loss(y_true, y_pred, normalize=True)¶
Zero-One classification loss
If normalize is True, return the fraction of misclassifications (float), else it returns the number of misclassifications (int). The best performance is 0.
Parameters: y_true : array-like
y_pred : array-like
normalize : bool, optional
If False (default), return the number of misclassifications. Otherwise, return the fraction of misclassifications.
Returns: loss : float or int,
If normalize == True, return the fraction of misclassifications (float), else it returns the number of misclassifications (int).
Examples
>>> from sklearn.metrics import zero_one_loss >>> y_pred = [1, 2, 3, 4] >>> y_true = [2, 2, 3, 4] >>> zero_one_loss(y_true, y_pred) 0.25 >>> zero_one_loss(y_true, y_pred, normalize=False) 1