3. Supervised learning¶
- 3.1. Generalized Linear Models
- 3.1.1. Ordinary Least Squares
- 3.1.2. Ridge Regression
- 3.1.3. Lasso
- 3.1.4. Elastic Net
- 3.1.5. Multi-task Lasso
- 3.1.6. Least Angle Regression
- 3.1.7. LARS Lasso
- 3.1.8. Orthogonal Matching Pursuit (OMP)
- 3.1.9. Bayesian Regression
- 3.1.10. Logistic regression
- 3.1.11. Stochastic Gradient Descent - SGD
- 3.1.12. Perceptron
- 3.1.13. Passive Aggressive Algorithms
- 3.2. Support Vector Machines
- 3.3. Stochastic Gradient Descent
- 3.4. Nearest Neighbors
- 3.5. Gaussian Processes
- 3.6. Partial Least Squares
- 3.7. Naive Bayes
- 3.8. Decision Trees
- 3.9. Ensemble methods
- 3.10. Multiclass and multilabel algorithms
- 3.11. Feature selection
- 3.12. Semi-Supervised
- 3.13. Linear and Quadratic Discriminant Analysis
- 3.14. Isotonic regression