""" ============================================== Plot randomly generated classification dataset ============================================== Plot several randomly generated 2D classification datasets. This example illustrates the `datasets.make_classification` function. Three binary and two multi-class classification datasets are generated, with different numbers of informative features and clusters per class. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import make_classification plt.figure(figsize=(8, 6)) plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95) plt.subplot(221) plt.title("One informative feature, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(222) plt.title("Two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(223) plt.title("Two informative features, two clusters", fontsize='small') X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2) plt.subplot(224) plt.title("Multi-class, two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.show()