""" =================================================================== Decision Tree Regression =================================================================== A 1D regression with decision tree. The :ref:`decision trees ` is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model from sklearn.tree import DecisionTreeRegressor clf_1 = DecisionTreeRegressor(max_depth=2) clf_2 = DecisionTreeRegressor(max_depth=5) clf_1.fit(X, y) clf_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = clf_1.predict(X_test) y_2 = clf_2.predict(X_test) # Plot the results import matplotlib.pyplot as plt plt.figure() plt.scatter(X, y, c="k", label="data") plt.plot(X_test, y_1, c="g", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, c="r", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()