- 1. Supervised learning
- 1.1. Generalized Linear Models
- 1.2. Support Vector Machines
- 1.3. Stochastic Gradient Descent
- 1.4. Nearest Neighbors
- 1.5. Gaussian Processes
- 1.6. Cross decomposition
- 1.7. Naive Bayes
- 1.8. Decision Trees
- 1.9. Ensemble methods
- 1.10. Multiclass and multilabel algorithms
- 1.11. Feature selection
- 1.12. Semi-Supervised
- 1.13. Linear and quadratic discriminant analysis
- 1.14. Isotonic regression
- 2. Unsupervised learning
- 3. Model selection and evaluation
- 3.1. Cross-validation: evaluating estimator performance
- 3.2. Grid Search: Searching for estimator parameters
- 3.3. Pipeline: chaining estimators
- 3.4. FeatureUnion: Combining feature extractors
- 3.5. Model evaluation: quantifying the quality of predictions
- 3.6. Model persistence
- 3.7. Validation curves: plotting scores to evaluate models
- 4. Dataset transformations
- 5. Dataset loading utilities
- 5.1. General dataset API
- 5.2. Toy datasets
- 5.3. Sample images
- 5.4. Sample generators
- 5.5. Datasets in svmlight / libsvm format
- 5.6. The Olivetti faces dataset
- 5.7. The 20 newsgroups text dataset
- 5.8. Downloading datasets from the mldata.org repository
- 5.9. The Labeled Faces in the Wild face recognition dataset
- 5.10. Forest covertypes
- 6. Strategies to scale computationally: bigger data
- 7. Computational Performance