""" =============================== Plot classification probability =============================== Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, as well as L1 and L2 penalized logistic regression. The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class. """ # Author: Alexandre Gramfort # License: BSD Style. # $Id$ import pylab as pl import numpy as np from scikits.learn.logistic import LogisticRegression from scikits.learn.svm import SVC from scikits.learn import datasets iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features for visualization y = iris.target n_features = X.shape[1] C = 1.0 # Create different classifiers. The logistic regression cannot do # multiclass out of the box. classifiers = { 'L1 logistic': LogisticRegression(C=C, penalty='l1'), 'L2 logistic': LogisticRegression(C=C, penalty='l2'), 'Linear SVC': SVC(kernel='linear', C=C, probability=True), } n_classifiers = len(classifiers) pl.figure(figsize=(3*2, n_classifiers*2)) pl.subplots_adjust(bottom=.2, top=.95) for index, (name, classifier) in enumerate(classifiers.iteritems()): classifier.fit(X, y) y_pred = classifier.predict(X) classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100 print "classif_rate for %s : %f " % (name, classif_rate) # View probabilities= xx = np.linspace(3,9,100) yy = np.linspace(1,5,100).T xx, yy = np.meshgrid(xx, yy) Xfull = np.c_[xx.ravel(),yy.ravel()] probas = classifier.predict_proba(Xfull) n_classes = np.unique(y_pred).size for k in range(n_classes): pl.subplot(n_classifiers, n_classes, index*n_classes + k + 1) pl.title("Class %d" % k) if k == 0: pl.ylabel(name) imshow_handle = pl.imshow(probas[:, k].reshape((100, 100)), extent=(3, 9, 1, 5), origin='lower') pl.xticks(()) pl.yticks(()) idx = (y_pred == k) if idx.any(): pl.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = pl.axes([0.15, 0.04, 0.7, 0.05]) pl.title("Probability") pl.colorbar(imshow_handle, cax=ax, orientation='horizontal') pl.show()