""" =========================================== Ledoit-Wolf vs Covariance simple estimation =========================================== Covariance estimation can be regularized using a shrinkage parameter. Ledoit-Wolf estimates automatically this parameter. In this example, we compute the likelihood of unseen data for different values of the shrinkage parameter. The Ledoit-Wolf estimate reaches an almost optimal value. """ print __doc__ import numpy as np import pylab as pl ############################################################################### # Generate sample data n_features, n_samples = 30, 20 X_train = np.random.normal(size=(n_samples, n_features)) X_test = np.random.normal(size=(n_samples, n_features)) # Color samples coloring_matrix = np.random.normal(size=(n_features, n_features)) X_train = np.dot(X_train, coloring_matrix) X_test = np.dot(X_test, coloring_matrix) ############################################################################### # Compute Ledoit-Wolf and Covariances on a grid of shrinkages from scikits.learn.covariance import LedoitWolf, ShrunkCovariance lw = LedoitWolf() loglik_lw = lw.fit(X_train).score(X_test) cov = ShrunkCovariance() shrinkages = np.logspace(-2, 0, 30) negative_logliks = [-cov.fit(X_train, shrinkage=s).score(X_test) \ for s in shrinkages] ############################################################################### # Plot results pl.close('all') pl.loglog(shrinkages, negative_logliks) pl.xlabel('Shrinkage') pl.ylabel('Negative log-likelihood') pl.vlines(lw.shrinkage_, pl.ylim()[0], -loglik_lw, color='g', linewidth=3, label='Ledoit-Wolf estimate') pl.legend() pl.show()