=========================================== scikits.learn: machine learning in python =========================================== .. only:: html .. |banner1| image:: auto_examples/cluster/images/plot_affinity_propagation.png :height: 150 :target: auto_examples/cluster/plot_affinity_propagation.html .. |banner2| image:: auto_examples/glm/images/plot_lasso_lars.png :height: 150 :target: auto_examples/glm/plot_lasso_lars.html .. |banner3| image:: auto_examples/svm/images/plot_oneclass.png :height: 150 :target: auto_examples/svm/plot_oneclass.html .. |banner4| image:: auto_examples/cluster/images/plot_lena_segmentation.png :height: 150 :target: auto_examples/cluster/plot_lena_segmentation.html .. |center-div| raw:: html <div style="text-align: center; margin: 0px 0 -5px 0;"> .. |end-div| raw:: html </div> |center-div| |banner1| |banner2| |banner3| |banner4| |end-div| .. topic:: Easy-to-use and general-purpose machine learning in Python ``scikits.learn`` is a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific Python packages (`numpy <http://www.scipy.org>`_, `scipy <http://www.scipy.org>`_, `matplotlib <http://matplotlib.sourceforge.net/>`_). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: **machine-learning as a versatile tool for science and engineering**. :Features: * **Solid**: :ref:`supervised-learning`: classification, regression * **Work in progress**: :ref:`unsupervised-learning`: :ref:`clustering`, :ref:`gmm`, manifold learning, ICA * **Planed**: Gaussian graphical models, matrix factorization :License: Open source, commercially usable: **BSD license** (3 clause) .. only:: html .. raw:: html <div class="example_digits"> :ref:`A simple Example: recognizing hand-written digits <example_plot_digits_classification.py>` :: import pylab as pl from scikits.learn import datasets, svm digits = datasets.load_digits() for index, (image, label) in enumerate(zip(digits.images, digits.target)[:4]): pl.subplot(2, 4, index+1) pl.imshow(image, cmap=pl.cm.gray_r) pl.title('Training: %i' % label) n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) classifier = svm.SVC() classifier.fit(data[:n_samples/2], digits.target[:n_samples/2]) for index, image in enumerate(digits.images[n_samples/2:n_samples/2+4]): pl.subplot(2, 4, index+5) pl.imshow(image, cmap=pl.cm.gray_r) pl.title('Prediction: %i' % classifier.predict(image.ravel())) .. image:: images/plot_digits_classification.png :height: 140 :target: auto_examples/plot_digits_classification.html .. raw:: html </div> .. warning:: This documentation is relative to the development version, documentation for the stable version can be found `here <http://scikit-learn.sourceforge.net/old_doc/>`__ First steps ====================== .. toctree:: :maxdepth: 2 install tutorial User guide ========== .. toctree:: :maxdepth: 2 user_guide Gallery ======= .. toctree:: :maxdepth: 2 auto_examples/index Developement ============ .. toctree:: :maxdepth: 2 developers/index performance About ===== .. toctree:: :maxdepth: 2 about