.. _clustering: =================================================== Clustering =================================================== `Clustering <http://en.wikipedia.org/wiki/Cluster_analysis>`_ of unlabeled data can be performed with the module `scikits.learn.cluster`. .. contents:: This page contents: Affinity propagation ==================== .. figure:: ../auto_examples/cluster/images/plot_affinity_propagation.png :target: ../auto_examples/cluster/plot_affinity_propagation.html :align: center :scale: 50 .. autoclass:: scikits.learn.cluster.AffinityPropagation :members: .. topic:: Examples: * :ref:`example_plot_affinity_propagation.py`: Affinity Propagation on a synthetic 2D datasets with 3 classes. * :ref:`example_stock_market.py` Affinity Propagation on Financial time series to find groups of companies Mean Shift ==================== .. figure:: ../auto_examples/cluster/images/plot_mean_shift.png :target: ../auto_examples/cluster/plot_mean_shift.html :align: center :scale: 50 .. autoclass:: scikits.learn.cluster.MeanShift :members: .. topic:: Examples: * :ref:`example_plot_mean_shift.py`: Mean Shift clustering on a synthetic 2D datasets with 3 classes. K-means ==================== .. autoclass:: scikits.learn.cluster.KMeans :members: Spectral clustering ==================== Spectral clustering is especially efficient if the affinity matrix is sparse. .. autoclass:: scikits.learn.cluster.SpectralClustering :members: .. topic:: Examples: * :ref:`example_cluster_plot_lena_segmentation.py`: Spectral clustering to split the image of lena in regions. * :ref:`example_cluster_plot_segmentation_toy.py`: Segmenting objects from a noisy background using spectral clustering.