.. currentmodule:: scikits.learn
0.5
===
.. _changes_0_5:
Changelog
---------
New classes
~~~~~~~~~~~~
- Support for sparse matrices in some classifiers of modules
``svm`` and ``glm`` (see :class:`svm.sparse.SVC`,
:class:`svm.sparse.SVR`, :class:`svm.sparse.LinearSVC`,
:class:`glm.sparse.Lasso`, :class:`glm.sparse.ElasticNet`)
- New :class:`pipeline.Pipeline` object to compose different estimators.
- Recursive Feature Elimination routines in module
:ref:`feature_selection_doc`.
- Addition of various classes capable of cross validation in the
glm module (:class:`glm.LassoCV`, :class:`glm.ElasticNetCV`,
etc.).
- New, more efficient LARS algorithm implementation. The Lasso
variant of the algorithm is also implemented. See
:class:`glm.lars_path`, :class:`glm.LARS` and
:class:`glm.LassoLARS`.
- New Hidden Markov Models module (see classes
:class:`hmm.GaussianHMM`, :class:`hmm.MultinomialHMM`,
:class:`hmm.GMMHMM`)
- New module feature_extraction (see :ref:`class reference
<feature_extraction_ref>`)
- New FastICA algorithm in module scikits.learn.fastica
Documentation
~~~~~~~~~~~~~
- Improved documentation for many modules, now separating
narrative documentation from the class reference. As an example,
see `documentation for the SVM module
<http://scikit-learn.sourceforge.net/modules/svm.html>`_ and the
complete `class reference
<http://scikit-learn.sourceforge.net/modules/classes.html>`_.
Fixes
~~~~~
- API changes: adhere variable names to PEP-8, give more
meaningful names.
- Fixes for svm module to run on a shared memory context
(multiprocessing).
- It is again possible to generate latex (and thus PDF) from the
sphinx docs.
Examples
~~~~~~~~
- new examples using some of the mlcomp datasets:
:ref:`example_mlcomp_sparse_document_classification.py`,
:ref:`example_mlcomp_document_classification.py`
- Many more examaples. `See here
<http://scikit-learn.sourceforge.net/auto_examples/index.html>`_
the full list of examples.
External dependencies
~~~~~~~~~~~~~~~~~~~~~
- Joblib is now a dependencie of this package, although it is
shipped with (scikits.learn.externals.joblib).
Removed modules
~~~~~~~~~~~~~~~
- Module ann (Artificial Neural Networks) has been removed from
the distribution. Users wanting this sort of algorithms should
take a look into pybrain.
Misc
~~~~
- New sphinx theme for the web page.
Authors
-------
The following is a list of authors for this release, preceeded by
number of commits:
* 262 Fabian Pedregosa
* 240 Gael Varoquaux
* 149 Alexandre Gramfort
* 116 Olivier Grisel
* 40 Vincent Michel
* 38 Ron Weiss
* 23 Matthieu Perrot
* 10 Bertrand Thirion
* 7 Yaroslav Halchenko
* 9 VirgileFritsch
* 6 Edouard Duchesnay
* 4 Mathieu Blondel
* 1 Ariel Rokem
* 1 Matthieu Brucher
0.4
===
Changelog
---------
Major changes in this release include:
- Coordinate Descent algorithm (Lasso, ElasticNet) refactoring &
speed improvements (roughly 100x times faster).
- Coordinate Descent Refactoring (and bug fixing) for consistency
with R's package GLMNET.
- New metrics module.
- New GMM module contributed by Ron Weiss.
- Implementation of the LARS algorithm (without Lasso variant for now).
- feature_selection module redesign.
- Migration to GIT as content management system.
- Removal of obsolete attrselect module.
- Rename of private compiled extensions (aded underscore).
- Removal of legacy unmaintained code.
- Documentation improvements (both docstring and rst).
- Improvement of the build system to (optionally) link with MKL.
Also, provide a lite BLAS implementation in case no system-wide BLAS is
found.
- Lots of new examples.
- Many, many bug fixes ...
Authors
-------
The committer list for this release is the following (preceded by number
of commits):
* 143 Fabian Pedregosa
* 35 Alexandre Gramfort
* 34 Olivier Grisel
* 11 Gael Varoquaux
* 5 Yaroslav Halchenko
* 2 Vincent Michel
* 1 Chris Filo Gorgolewski