""" ================== Pipeline Anova SVM ================== Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a C-SVM of the selected features. """ print __doc__ from scikits.learn import svm from scikits.learn.datasets import samples_generator from scikits.learn.feature_selection import SelectKBest, f_regression from scikits.learn.pipeline import Pipeline # import some data to play with X, y = samples_generator.test_dataset_classif(k=5) # ANOVA SVM-C # 1) anova filter, take 5 best ranked features anova_filter = SelectKBest(f_regression, k=5) # 2) svm clf = svm.SVC(kernel='linear') anova_svm = Pipeline([('anova', anova_filter), ('svm', clf)]) anova_svm.fit(X, y) anova_svm.predict(X)