#!/usr/bin/python # -*- coding: utf-8 -*- """ ======================================================================== Gaussian Processes regression: goodness-of-fit on the 'diabetes' dataset ======================================================================== This example consists in fitting a Gaussian Process model onto the diabetes dataset. The correlation parameters are determined by means of maximum likelihood estimation (MLE). An anisotropic squared exponential correlation model with a constant regression model are assumed. We also used a nugget = 1e-2 in order to account for the (strong) noise in the targets. We compute then compute a cross-validation estimate of the coefficient of determination (R2) without reperforming MLE, using the set of correlation parameters found on the whole dataset. """ print __doc__ # Author: Vincent Dubourg # License: BSD style from scikits.learn import datasets from scikits.learn.gaussian_process import GaussianProcess from scikits.learn.cross_val import cross_val_score, KFold # Load the dataset from scikits' data sets diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # Instanciate a GP model gp = GaussianProcess(regr='constant', corr='absolute_exponential', theta0=[1e-4] * 10, thetaL=[1e-12] * 10, thetaU=[1e-2] * 10, nugget=1e-2, optimizer='Welch') # Fit the GP model to the data performing maximum likelihood estimation gp.fit(X, y) # Deactivate maximum likelihood estimation for the cross-validation loop gp.theta0 = gp.theta # Given correlation parameter = MLE gp.thetaL, gp.thetaU = None, None # None bounds deactivate MLE # Perform a cross-validation estimate of the coefficient of determination using # the cross_val module using all CPUs available on the machine K = 20 # folds R2 = cross_val_score(gp, X, y=y, cv=KFold(y.size, K), n_jobs=-1).mean() print("The %d-Folds estimate of the coefficient of determination is R2 = %s" % (K, R2))