""" ================================ Recognizing hand-written digits ================================ An example showing how the scikit-learn can be used to recognize images of hand-written digits. """ print __doc__ # Author: Gael Varoquaux # License: Simplified BSD # Standard scientific Python imports import pylab as pl # The digits dataset from scikits.learn import datasets digits = datasets.load_digits() # The data that we are interested in is made of 8x8 images of digits, # let's have a look at the first 3 images. We know which digit they # represent: it is given in the 'target' of the dataset. for index, (image, label) in enumerate(zip(digits.images, digits.target)[:4]): pl.subplot(2, 4, index+1) pl.imshow(image, cmap=pl.cm.gray_r) pl.title('Training: %i' % label) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Import a classifier: from scikits.learn import svm from scikits.learn.metrics import classification_report from scikits.learn.metrics import confusion_matrix classifier = svm.SVC() # We learn the digits on the first half of the digits classifier.fit(data[:n_samples/2], digits.target[:n_samples/2]) # Now predict the value of the digit on the second half: expected = digits.target[n_samples/2:] predicted = classifier.predict(data[n_samples/2:]) print "Classification report for classifier:" print classifier print print classification_report(expected, predicted) print print "Confusion matrix:" print confusion_matrix(expected, predicted) for index, (image, prediction) in enumerate( zip(digits.images[n_samples/2:], predicted)[:4]): pl.subplot(2, 4, index+5) pl.imshow(image, cmap=pl.cm.gray_r) pl.title('Prediction: %i' % prediction) pl.show()