""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on the iris dataset. It will plot the decision surface for four different SVM classifiers. """ print __doc__ import numpy as np import pylab as pl from scikits.learn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target h=.02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors svc = svm.SVC(kernel='linear').fit(X, Y) rbf_svc = svm.SVC(kernel='poly').fit(X, Y) nu_svc = svm.NuSVC(kernel='linear').fit(X,Y) lin_svc = svm.LinearSVC().fit(X, Y) # create a mesh to plot in x_min, x_max = X[:,0].min()-1, X[:,0].max()+1 y_min, y_max = X[:,1].min()-1, X[:,1].max()+1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'SVC with polynomial (degree 3) kernel', 'NuSVC with linear kernel', 'LinearSVC (linear kernel)'] pl.set_cmap(pl.cm.Paired) for i, clf in enumerate((svc, rbf_svc, nu_svc, lin_svc)): # Plot the decision boundary. For that, we will asign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. pl.subplot(2, 2, i+1) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) pl.set_cmap(pl.cm.Paired) pl.contourf(xx, yy, Z) pl.axis('tight') # Plot also the training points pl.scatter(X[:,0], X[:,1], c=Y) pl.title(titles[i]) pl.axis('tight') pl.show()