""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: K. Funkunaga and L.D. Hosteler, "The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition" """ print __doc__ import numpy as np from scikits.learn.cluster import MeanShift, estimate_bandwidth ################################################################################ # Generate sample data np.random.seed(0) n_points_per_cluster = 250 n_clusters = 3 n_points = n_points_per_cluster*n_clusters means = np.array([[1,1],[-1,-1],[1,-1]]) std = .6 clustMed = [] X = np.empty((0, 2)) for i in range(n_clusters): X = np.r_[X, means[i] + std * np.random.randn(n_points_per_cluster, 2)] ################################################################################ # Compute clustering with MeanShift bandwidth = estimate_bandwidth(X, quantile=0.3) ms = MeanShift(bandwidth=bandwidth) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print "number of estimated clusters : %d" % n_clusters_ ################################################################################ # Plot result import pylab as pl from itertools import cycle pl.figure(1) pl.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] pl.plot(X[my_members,0], X[my_members,1], col+'.') pl.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) pl.title('Estimated number of clusters: %d' % n_clusters_) pl.show()