""" ============================= Recursive feature elimination ============================= A recursive feature elimination is performed prior to SVM classification. """ print __doc__ from scikits.learn.svm import SVC from scikits.learn import datasets from scikits.learn.feature_selection import RFE ################################################################################ # Loading the Digits dataset digits = datasets.load_digits() # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) X = digits.images.reshape((n_samples, -1)) y = digits.target ################################################################################ # Create the RFE object and compute a cross-validated score svc = SVC(kernel="linear", C=1) rfe = RFE(estimator=svc, n_features=1, percentage=0.1) rfe.fit(X, y) image_ranking_ = rfe.ranking_.reshape(digits.images[0].shape) import pylab as pl pl.matshow(image_ranking_) pl.colorbar() pl.title('Ranking of voxels with RFE') pl.show()