""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machines classifier with linear kernel. """ print __doc__ import numpy as np import pylab as pl from scikits.learn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2,2], np.random.randn(20, 2) + [2, 2]] Y = [0]*20 + [1]*20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0]/w[1] xx = np.linspace(-5, 5) yy = a*xx - (clf.intercept_[0])/w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a*xx + (b[1] - a*b[0]) b = clf.support_vectors_[-1] yy_up = a*xx + (b[1] - a*b[0]) # plot the line, the points, and the nearest vectors to the plane pl.set_cmap(pl.cm.Paired) pl.plot(xx, yy, 'k-') pl.plot(xx, yy_down, 'k--') pl.plot(xx, yy_up, 'k--') pl.scatter(X[:,0], X[:,1], c=Y) pl.scatter(clf.support_vectors_[:,0], clf.support_vectors_[:,1], c='white') pl.axis('tight') pl.show()