""" ============== SGD: Penalties ============== Plot the contours of the three penalties supported by `scikits.learn.linear_model.stochastic_gradient`. """ from __future__ import division print __doc__ import numpy as np import pylab as pl def l1(xs): return np.array([np.sqrt((1 - np.sqrt(x**2.0))**2.0) for x in xs]) def l2(xs): return np.array([np.sqrt(1.0-x**2.0) for x in xs]) def el(xs, z): return np.array([(2 - 2*x - 2*z + 4*x*z - (4*z**2 - 8*x*z**2 + 8*x**2*z**2 - 16*x**2*z**3 + 8*x*z**3 + 4*x**2*z**4)**(1/2) - 2*x*z**2)/(2 - 4*z) for x in xs]) def cross(ext): pl.plot([-ext,ext],[0,0], "k-") pl.plot([0,0], [-ext,ext], "k-") xs = np.linspace(0, 1, 100) alpha = 0.501 # 0.5 division throuh zero cross(1.2) pl.plot(xs, l1(xs), "r-", label="L1") pl.plot(xs, -1.0*l1(xs), "r-") pl.plot(-1*xs, l1(xs), "r-") pl.plot(-1*xs, -1.0*l1(xs), "r-") pl.plot(xs, l2(xs), "b-", label="L2") pl.plot(xs, -1.0 * l2(xs), "b-") pl.plot(-1*xs, l2(xs), "b-") pl.plot(-1*xs, -1.0 * l2(xs), "b-") pl.plot(xs, el(xs, alpha), "y-", label="Elastic Net") pl.plot(xs, -1.0 * el(xs, alpha), "y-") pl.plot(-1*xs, el(xs, alpha), "y-") pl.plot(-1*xs, -1.0 * el(xs, alpha), "y-") pl.xlabel(r"$w_0$") pl.ylabel(r"$w_1$") pl.legend() pl.axis("equal") pl.show()