""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print __doc__ import numpy as np import pylab as pl from scikits.learn import svm, datasets, feature_selection, cross_val from scikits.learn.pipeline import Pipeline ################################################################################ # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2*np.random.random((n_samples, 200)))) ################################################################################ # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC())]) ################################################################################ # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf._set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_val.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) pl.errorbar(percentiles, score_means, np.array(score_stds)) pl.title( 'Performance of the SVM-Anova varying the percentile of features selected') pl.xlabel('Percentile') pl.ylabel('Prediction rate') pl.axis('tight') pl.show()