Warning: This documentation is for scikits.learn version 0.6.0. — Latest stable version

Contents

Libsvm GUI

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings.

To create positive examples click the left mouse button; to create negative examples click the right button.

If all examples are from the same class, it uses a one-class SVM.

TODO add labels to the panel.

Requirements

  • Tkinter
  • scikits.learn
  • matplotlib with TkAgg

Python source code: svm_gui.py

from __future__ import division

print __doc__

# Author: Peter Prettenhoer <peter.prettenhofer@gmail.com>
#
# License: BSD Style.

import matplotlib
matplotlib.use('TkAgg')

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
#from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg
from matplotlib.figure import Figure
from matplotlib.contour import ContourSet

import Tkinter as Tk
import sys
import numpy as np

from scikits.learn import svm

y_min, y_max = -50, 50
x_min, x_max = -50, 50


class Model(object):
    """The Model which hold the data. It implements the
    observable in the observer pattern and notifies the
    registered observers on change event.
    """

    def __init__(self):
        self.observers = []
        self.surface = None
        self.data = []
        self.cls = None
        self.surface_type = 0

    def changed(self, event):
        """Notify the observers. """
        for observer in self.observers:
            observer.update(event, self)

    def add_observer(self, observer):
        """Register an observer. """
        self.observers.append(observer)

    def set_surface(self, surface):
        self.surface = surface


class Controller(object):
    def __init__(self, model):
        self.model = model
        self.kernel = Tk.IntVar()
        self.surface_type = Tk.IntVar()
        # Whether or not a model has been fitted
        self.fitted = False

    def fit(self):
        print "fit the model"
        train = np.array(self.model.data)
        X = train[:, :2]
        y = train[:, 2]

        C = float(self.complexity.get())
        gamma = float(self.gamma.get())
        coef0 = float(self.coef0.get())
        degree = int(self.degree.get())
        kernel_map = {0: "linear", 1: "rbf", 2: "poly"}
        if len(np.unique(y)) == 1:
            clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()],
                      gamma=gamma, coef0=coef0, degree=degree)
            clf.fit(X)
        else:
            clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C,
                          gamma=gamma, coef0=coef0, degree=degree)
            clf.fit(X, y)
        if hasattr(clf, 'score'):
            print "Accuracy:", clf.score(X, y) * 100
        X1, X2, Z = self.decision_surface(clf)
        self.model.clf = clf
        self.model.set_surface((X1, X2, Z))
        self.model.surface_type = self.surface_type.get()
        self.fitted = True
        self.model.changed("surface")

    def decision_surface(self, cls):
        delta = 1
        x = np.arange(x_min, x_max + delta, delta)
        y = np.arange(y_min, y_max + delta, delta)
        X1, X2 = np.meshgrid(x, y)
        Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()])
        Z = Z.reshape(X1.shape)
        return X1, X2, Z

    def clear_data(self):
        self.model.data = []
        self.fitted = False
        self.model.changed("clear")

    def add_example(self, x, y, label):
        self.model.data.append((x, y, label))
        self.model.changed("example_added")

        # update decision surface if already fitted.
        self.refit()

    def refit(self):
        """Refit the model if already fitted. """
        if self.fitted:
            self.fit()


class View(object):
    """Test docstring. """
    def __init__(self, root, controller):
        f = Figure()
        ax = f.add_subplot(111)
        ax.set_xticks([])
        ax.set_yticks([])
        ax.set_xlim((x_min, x_max))
        ax.set_ylim((y_min, y_max))
        canvas = FigureCanvasTkAgg(f, master=root)
        canvas.show()
        canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
        canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
        canvas.mpl_connect('button_press_event', self.onclick)
#        toolbar = NavigationToolbar2TkAgg(canvas, root)
#        toolbar.update()
        self.controllbar = ControllBar(root, controller)
        self.f = f
        self.ax = ax
        self.canvas = canvas
        self.controller = controller
        self.contours = []
        self.c_labels = None
        self.plot_kernels()

    def plot_kernels(self):
        self.ax.text(-50, -60, "Linear: $u^T v$")
        self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$")
        self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$")

    def onclick(self, event):
        if event.xdata and event.ydata:
            if event.button == 1:
                self.controller.add_example(event.xdata, event.ydata, 1)
            elif event.button == 3:
                self.controller.add_example(event.xdata, event.ydata, -1)

    def update(self, event, model):
        if event == "example_added":
            x, y, l = model.data[-1]
            if l == 1:
                color = 'w'
            elif l == -1:
                color = 'k'
            self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0)

        if event == "clear":
            self.ax.clear()
            self.ax.set_xticks([])
            self.ax.set_yticks([])
            self.contours = []
            self.c_labels = None
            self.plot_kernels()

        if event == "surface":
            self.remove_surface()
            self.plot_support_vectors(model.clf.support_vectors_)
            self.plot_decision_surface(model.surface, model.surface_type)

        self.canvas.draw()

    def remove_surface(self):
        """Remove old decision surface."""
        if len(self.contours) > 0:
            for contour in self.contours:
                if isinstance(contour, ContourSet):
                    for lineset in contour.collections:
                        lineset.remove()
                else:
                    contour.remove()
            self.contours = []

    def plot_support_vectors(self, support_vectors):
        """Plot the support vectors by placing circles over the
        corresponding data points and adds the circle collection
        to the contours list."""
        cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1],
                             s=80, edgecolors="k", facecolors="none")
        self.contours.append(cs)

    def plot_decision_surface(self, surface, type):
        X1, X2, Z = surface
        if type == 0:
            levels = [-1.0, 0.0, 1.0]
            linestyles = ['dashed', 'solid', 'dashed']
            colors = 'k'
            self.contours.append(self.ax.contour(X1, X2, Z, levels,
                                                 colors=colors,
                                                 linestyles=linestyles))
        elif type == 1:
            self.contours.append(self.ax.contourf(X1, X2, Z, 10,
                                             cmap=matplotlib.cm.bone,
                                             origin='lower',
                                             alpha=0.85))
            self.contours.append(self.ax.contour(X1, X2, Z, [0.0],
                                                 colors='k',
                                                 linestyles=['solid']))
        else:
            raise ValueError("surface type unknown")


class ControllBar(object):
    def __init__(self, root, controller):
        fm = Tk.Frame(root)
        kernel_group = Tk.Frame(fm)
        Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel,
                       value=0, command=controller.refit).pack(anchor=Tk.W)
        Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel,
                       value=1, command=controller.refit).pack(anchor=Tk.W)
        Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel,
                       value=2, command=controller.refit).pack(anchor=Tk.W)
        kernel_group.pack(side=Tk.LEFT)

        valbox = Tk.Frame(fm)
        controller.complexity = Tk.StringVar()
        controller.complexity.set("1.0")
        c = Tk.Frame(valbox)
        Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(c, width=6, textvariable=controller.complexity).pack(
            side=Tk.LEFT)
        c.pack()

        controller.gamma = Tk.StringVar()
        controller.gamma.set("0.01")
        g = Tk.Frame(valbox)
        Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT)
        g.pack()

        controller.degree = Tk.StringVar()
        controller.degree.set("3")
        d = Tk.Frame(valbox)
        Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT)
        d.pack()

        controller.coef0 = Tk.StringVar()
        controller.coef0.set("0")
        r = Tk.Frame(valbox)
        Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT)
        Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT)
        r.pack()
        valbox.pack(side=Tk.LEFT)

        cmap_group = Tk.Frame(fm)
        Tk.Radiobutton(cmap_group, text="Hyperplanes",
                       variable=controller.surface_type, value=0,
                       command=controller.refit).pack(anchor=Tk.W)
        Tk.Radiobutton(cmap_group, text="Surface",
                       variable=controller.surface_type, value=1,
                       command=controller.refit).pack(anchor=Tk.W)

        cmap_group.pack(side=Tk.LEFT)

        train_button = Tk.Button(fm, text='Fit', width=5,
                                 command=controller.fit)
        train_button.pack()
        fm.pack(side=Tk.LEFT)
        Tk.Button(fm, text='Clear', width=5,
                  command=controller.clear_data).pack(side=Tk.LEFT)


def main(argv):
    root = Tk.Tk()
    model = Model()
    controller = Controller(model)
    root.wm_title("Scikit-learn Libsvm GUI")
    view = View(root, controller)
    model.add_observer(view)
    Tk.mainloop()

if __name__ == "__main__":
    main(sys.argv)