6.5.3. scikits.learn.ball_tree.BallTree¶
- class scikits.learn.ball_tree.BallTree¶
Ball Tree for fast nearest-neighbor searches :
BallTree(M, leafsize=20)
Parameters : M : array-like, shape = [N,D]
N is the number of points in the data set, and D is the dimension of the parameter space.
- Note: if M is an aligned array of doubles (not
necessarily contiguous) then data will not be copied. Otherwise, an internal copy will be made.
- leafsize : positive integer (default = 20)
number of points at which to switch to brute-force
Methods
query(x[, k, return_distance]) query the Ball Tree for the k nearest neighbors query_ball(x,r,count_only = False) query the Ball Tree for the k nearest neighbors - __init__()¶
x.__init__(...) initializes x; see help(type(x)) for signature
- data¶
View of data making up the Ball Tree
- dim¶
Dimension of the Ball Tree
- query(x, k=1, return_distance=True)¶
- query the Ball Tree for the k nearest neighbors
Parameters : x : array-like, last dimension self.dim
An array of points to query
k : integer (default = 1)
The number of nearest neighbors to return
return_distance : boolean (default = True)
if True, return a tuple (d,i) if False, return array i
Returns : i : if return_distance == False
(d,i) : if return_distance == True
d : array of doubles - shape: x.shape[:-1] + (k,)
each entry gives the list of distances to the neighbors of the corresponding point (note that distances are not sorted)
i : array of integers - shape: x.shape[:-1] + (k,)
each entry gives the list of indices of neighbors of the corresponding point (note that neighbors are not sorted)
- query_ball(x, r, count_only = False)¶
- query the Ball Tree for the k nearest neighbors
Parameters : x : array-like, last dimension self.dim
An array of points to query
r : floating-point value
Radius around each point within which all neighbors are returned
count_only : boolean (default = False)
- if True, return count of neighbors
for each point
- if False, return full list of
neighbors for each point
Returns : i : array of integers, shape: x.shape[:-1]
if count_only is False each entry gives the list of neighbors of the corresponding point (note that neighbors are not sorted). Otherwise return only the number of neighbors.
- size¶
Number of points in the Ball Tree