6.2.1. scikits.learn.linear_model.LinearRegression¶
- class scikits.learn.linear_model.LinearRegression(fit_intercept=True)¶
Ordinary least squares Linear Regression.
Notes
From the implementation point of view, this is just plain Ordinary Least Squares (numpy.linalg.lstsq) wrapped as a predictor object.
Attributes
coef_ array Estimated coefficients for the linear regression problem. intercept_ array Independent term in the linear model. Methods
fit(X, y, **params) Fit linear model. predict(X) Predict using the linear model score(X, y) Returns the coefficient of determination of the prediction - __init__(fit_intercept=True)¶
- fit(X, y, **params)¶
Fit linear model.
Parameters : X : numpy array of shape [n_samples,n_features]
Training data
y : numpy array of shape [n_samples]
Target values
fit_intercept : boolean, optional
wether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
Returns : self : returns an instance of self.
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the coefficient of determination of the prediction
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float