Warning: This documentation is for scikits.learn version 0.6.0. — Latest stable version

Contents

6.2.12. scikits.learn.linear_model.lasso_path

scikits.learn.linear_model.lasso_path(X, y, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, verbose=False, **fit_params)

Compute Lasso path with coordinate descent

Parameters :

X : numpy array of shape [n_samples,n_features]

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory duplication

y : numpy array of shape [n_samples]

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

fit_params : kwargs

keyword arguments passed to the Lasso fit method

Returns :

models : a list of models along the regularization path

Notes

See examples/plot_lasso_coordinate_descent_path.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran contiguous numpy array.