""" =================== Logistic Regression =================== with l1 and l2 penalty """ print __doc__ # Author: Alexandre Gramfort # License: BSD Style. import numpy as np from scikits.learn.linear_model import LogisticRegression from scikits.learn import datasets iris = datasets.load_iris() X = iris.data y = iris.target # Set regularization parameter C = 0.1 classifier_l1_LR = LogisticRegression(C=C, penalty='l1') classifier_l2_LR = LogisticRegression(C=C, penalty='l2') classifier_l1_LR.fit(X, y) classifier_l2_LR.fit(X, y) hyperplane_coefficients_l1_LR = classifier_l1_LR.coef_[:] hyperplane_coefficients_l2_LR = classifier_l2_LR.coef_[:] # hyperplane_coefficients_l1_LR contains zeros due to the # L1 sparsity inducing norm pct_non_zeros_l1_LR = np.mean(hyperplane_coefficients_l1_LR != 0) * 100 pct_non_zeros_l2_LR = np.mean(hyperplane_coefficients_l2_LR != 0) * 100 print "Percentage of non zeros coefficients (L1) : %f" % pct_non_zeros_l1_LR print "Percentage of non zeros coefficients (L2) : %f" % pct_non_zeros_l2_LR