Warning: This documentation is for scikits.learn version 0.7.1. — Latest stable version

Contents

Species distribution modelingΒΆ

Modeling species’ geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the OneClassSVM provided by the package scikits.learn.svm as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses basemap to plot the coast lines and national boundaries of South America.

The two species are:

References:

../../_images/plot_species_distribution_modeling.png

Python source code: plot_species_distribution_modeling.py

from __future__ import division

# Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
# License: Simplified BSD

print __doc__

import pylab as pl
import numpy as np

try:
    from mpl_toolkits.basemap import Basemap
    basemap = True
except ImportError:
    basemap = False

from time import time
from os.path import normpath, split, exists
from glob import glob
from scikits.learn import svm
from scikits.learn.metrics import roc_curve, auc
from scikits.learn.datasets.base import Bunch

################################################################################
# Download the data, if not already on disk
samples_url = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" \
              "samples.zip"
coverage_url = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" \
               "coverages.zip"
samples_archive_name = "samples.zip"
coverage_archive_name = "coverages.zip"


def download(url, archive_name):
    if not exists(archive_name[:-4]):
        if not exists(archive_name):
            import urllib
            print "Downloading data, please wait ..."
            print url
            opener = urllib.urlopen(url)
            open(archive_name, 'wb').write(opener.read())
            print

        import zipfile
        print "Decompressiong the archive: " + archive_name
        zipfile.ZipFile(archive_name).extractall()
        print


download(samples_url, samples_archive_name)
download(coverage_url, coverage_archive_name)

t0 = time()



################################################################################
# Preprocess data

species = ["bradypus_variegatus_0", "microryzomys_minutus_0"]
species_map = dict([(s, i) for i, s in enumerate(species)])

# x,y coordinates of study area
x_left_lower_corner = -94.8
y_left_lower_corner = -56.05
n_cols = 1212
n_rows = 1592
grid_size = 0.05  # ~5.5 km

# x,y coordinates for each cell
xmin = x_left_lower_corner + grid_size
xmax = xmin + (n_cols * grid_size)
ymin = y_left_lower_corner + grid_size
ymax = ymin + (n_rows * grid_size)

# x coordinates of the grid cells
xx = np.arange(xmin, xmax, grid_size)
# y coordinates of the grid cells
yy = np.arange(ymin, ymax, grid_size)

print "Data grid"
print "---------"
print "xmin, xmax:", xmin, xmax
print "ymin, ymax:", ymin, ymax
print "grid size:", grid_size
print 

################################################################################
# Load data

print "loading data from disk..."
def read_file(fname):
    """Read coverage grid data; returns array of
    shape [n_rows, n_cols]. """
    f = open(fname)
    # Skip header
    for i in range(6):
        f.readline()
    X = np.fromfile(f, dtype=np.float32, sep=" ", count=-1)
    f.close()
    return X.reshape((n_rows, n_cols))

def load_dir(directory):
    """Loads each of the coverage grids and returns a
    tensor of shape [14, n_rows, n_cols].
    """
    data = []
    for fpath in glob("%s/*.asc" % normpath(directory)):
        fname = split(fpath)[-1]
        fname = fname[:fname.index(".")]
        X = read_file(fpath)  #np.loadtxt(fpath, skiprows=6, dtype=np.float32)
        data.append(X)
    return np.array(data, dtype=np.float32)

def get_coverages(points, coverages, xx, yy):
    """
    Returns
    -------
    array : shape = [n_points, 14]
    """
    rows = []
    cols = []
    for n in range(points.shape[0]):
        i = np.searchsorted(xx, points[n, 0])
        j = np.searchsorted(yy, points[n, 1])
        rows.append(-j)
        cols.append(i)
    return coverages[:, rows, cols].T

species2id = lambda s: species_map.get(s, -1)
train = np.loadtxt('samples/alltrain.csv', converters={0: species2id},
                   skiprows=1, delimiter=",")
test = np.loadtxt('samples/alltest.csv', converters={0: species2id},
                  skiprows=1, delimiter=",")
# Load env variable grids
coverage = load_dir("coverages")

# Per species data
bv = Bunch(name=" ".join(species[0].split("_")[:2]),
           train=train[train[:,0] == 0, 1:],
           test=test[test[:,0] == 0, 1:])
mm = Bunch(name=" ".join(species[1].split("_")[:2]),
           train=train[train[:,0] == 1, 1:],
           test=test[test[:,0] == 1, 1:])

# Get features (=coverages)
bv.train_cover = get_coverages(bv.train, coverage, xx, yy)
bv.test_cover = get_coverages(bv.test, coverage, xx, yy)
mm.train_cover = get_coverages(mm.train, coverage, xx, yy)
mm.test_cover = get_coverages(mm.test, coverage, xx, yy)


def predict(clf, mean, std):
    """Predict the density of the land grid cells
    under the model `clf`.

    Returns
    -------
    array : shape [n_rows, n_cols]
    """
    Z = np.ones((n_rows, n_cols), dtype=np.float64)
    # the land points
    idx = np.where(coverage[2] > -9999)
    X = coverage[:, idx[0], idx[1]].T
    pred = clf.decision_function((X-mean)/std)[:,0]
    Z *= pred.min()
    Z[idx[0], idx[1]] = pred
    return Z

# background points (grid coordinates) for evaluation
np.random.seed(13)
background_points = np.c_[np.random.randint(low=0, high=n_rows, size=10000),
                          np.random.randint(low=0, high=n_cols, size=10000)].T

# The grid in x,y coordinates
X, Y = np.meshgrid(xx, yy[::-1])
#basemap = False
for i, species in enumerate([bv, mm]):
    print "_" * 80
    print "Modeling distribution of species '%s'" % species.name
    print
    # Standardize features
    mean = species.train_cover.mean(axis=0)
    std = species.train_cover.std(axis=0)
    train_cover_std = (species.train_cover - mean) / std

    # Fit OneClassSVM
    print "fit OneClassSVM ... ",
    clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5)
    clf.fit(train_cover_std)
    print "done. "

    # Plot map of South America
    pl.subplot(1, 2, i + 1)
    if basemap:
        print "plot coastlines using basemap"
        m = Basemap(projection='cyl', llcrnrlat=ymin,
                urcrnrlat=ymax, llcrnrlon=xmin,
                urcrnrlon=xmax, resolution='c')
        m.drawcoastlines()
        m.drawcountries()
        #m.drawrivers()
    else:
        print "plot coastlines from coverage"
        CS = pl.contour(X, Y, coverage[2,:,:], levels=[-9999], colors="k",
                        linestyles="solid")
        pl.xticks([])
        pl.yticks([])

    print "predict species distribution"
    Z = predict(clf, mean, std)
    levels = np.linspace(Z.min(), Z.max(), 25)
    Z[coverage[2,:,:] == -9999] = -9999
    CS = pl.contourf(X, Y, Z, levels=levels, cmap=pl.cm.Reds)
    pl.colorbar(format='%.2f')
    pl.scatter(species.train[:, 0], species.train[:, 1], s=2**2, c='black',
               marker='^', label='train')
    pl.scatter(species.test[:, 0], species.test[:, 1], s=2**2, c='black',
               marker='x', label='test')
    pl.legend()
    pl.title(species.name)
    pl.axis('equal')

    # Compute AUC w.r.t. background points
    pred_background = Z[background_points[0], background_points[1]]
    pred_test = clf.decision_function((species.test_cover-mean)/std)[:,0]
    scores = np.r_[pred_test, pred_background]
    y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)]
    fpr, tpr, thresholds = roc_curve(y, scores)
    roc_auc = auc(fpr, tpr)
    pl.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right")
    print "Area under the ROC curve : %f" % roc_auc

print "time elapsed: %.3fs" % (time() - t0)

pl.show()