Warning: This documentation is for scikits.learn version 0.7.1. — Latest stable version

Contents

Non-linear SVMΒΆ

Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs.

../../_images/plot_svm_nonlinear.png

Python source code: plot_svm_nonlinear.py

print __doc__

import numpy as np
import pylab as pl
from scikits.learn import svm

xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))
np.random.seed(0)
X = np.random.randn(300, 2)
Y = np.logical_xor(X[:,0]>0, X[:,1]>0)

# fit the model
clf = svm.NuSVC()
clf.fit(X, Y)

# plot the line, the points, and the nearest vectors to the plane
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

pl.set_cmap(pl.cm.Paired)
pl.pcolormesh(xx, yy, Z)
pl.scatter(X[:,0], X[:,1], c=Y)

pl.axis('tight')
pl.show()