""" ========================================================== Sample pipeline for text feature extraction and evaluation ========================================================== The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached and reused for the document classification example. You can adjust the number of categories by giving there name to the dataset loader or setting them to None to get the 20 of them. Here is a sample output of a run on a quad-core machine:: Loading 20 newsgroups dataset for categories: ['alt.atheism', 'talk.religion.misc'] 1427 documents 2 categories Performing grid search... pipeline: ['vect', 'tfidf', 'clf'] parameters: {'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07), 'clf__n_iter': (10, 50, 80), 'clf__penalty': ('l2', 'elasticnet'), 'tfidf__use_idf': (True, False), 'vect__analyzer__max_n': (1, 2), 'vect__max_df': (0.5, 0.75, 1.0), 'vect__max_features': (None, 5000, 10000, 50000)} done in 1737.030s Best score: 0.940 Best parameters set: clf__alpha: 9.9999999999999995e-07 clf__n_iter: 50 clf__penalty: 'elasticnet' tfidf__use_idf: True vect__analyzer__max_n: 2 vect__max_df: 0.75 vect__max_features: 50000 """ print __doc__ # Author: Olivier Grisel # Peter Prettenhofer # Mathieu Blondel # License: Simplified BSD from pprint import pprint from time import time import os import logging from scikits.learn.datasets import fetch_20newsgroups from scikits.learn.feature_extraction.text import CountVectorizer from scikits.learn.feature_extraction.text import TfidfTransformer from scikits.learn.linear_model.sparse import SGDClassifier from scikits.learn.grid_search import GridSearchCV from scikits.learn.pipeline import Pipeline # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') ################################################################################ # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', ] # Uncomment the following to do the analysis on all the categories #categories = None print "Loading 20 newsgroups dataset for categories:" print categories data = fetch_20newsgroups(subset='train', categories=categories) print "%d documents" % len(data.filenames) print "%d categories" % len(data.target_names) print ################################################################################ # define a pipeline combining a text feature extractor with a simple # classifier pipeline = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', SGDClassifier()), ]) parameters = { # uncommenting more parameters will give better exploring power but will # increase processing time in a combinatorial way 'vect__max_df': (0.5, 0.75, 1.0), # 'vect__max_features': (None, 5000, 10000, 50000), 'vect__analyzer__max_n': (1, 2), # words or bigrams # 'tfidf__use_idf': (True, False), 'clf__alpha': (0.00001, 0.000001), 'clf__penalty': ('l2', 'elasticnet'), # 'clf__n_iter': (10, 50, 80), } # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1) # cross-validation doesn't work if the length of the data is not known, # hence use lists instead of iterators text_docs = [file(f).read() for f in data.filenames] print "Performing grid search..." print "pipeline:", [name for name, _ in pipeline.steps] print "parameters:" pprint(parameters) t0 = time() grid_search.fit(text_docs, data.target) print "done in %0.3fs" % (time() - t0) print print "Best score: %0.3f" % grid_search.best_score print "Best parameters set:" best_parameters = grid_search.best_estimator._get_params() for param_name in sorted(parameters.keys()): print "\t%s: %r" % (param_name, best_parameters[param_name])