""" ================ Confusion matrix ================ Example of confusion matrix usage to evaluate the quality of the output of a classifier. """ print __doc__ import random import pylab as pl from scikits.learn import svm, datasets from scikits.learn.metrics import confusion_matrix # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target n_samples, n_features = X.shape p = range(n_samples) random.seed(0) random.shuffle(p) X, y = X[p], y[p] half = int(n_samples/2) # Run classifier classifier = svm.SVC(kernel='linear') y_ = classifier.fit(X[:half],y[:half]).predict(X[half:]) # Compute confusion matrix cm = confusion_matrix(y[half:], y_) print cm # Show confusion matrix pl.matshow(cm) pl.title('Confusion matrix') pl.colorbar() pl.show()