""" ====================== SVM with custom kernel ====================== Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. """ print __doc__ import numpy as np import pylab as pl from scikits.learn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target def my_kernel(x, y): """ We create a custom kernel: (2 0) k(x, y) = x ( ) y.T (0 1) """ M = np.array([[2, 0], [0, 1.0]]) return np.dot(np.dot(x, M), y.T) h=.02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel=my_kernel) clf.fit(X, Y) # Plot the decision boundary. For that, we will asign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:,0].min()-1, X[:,0].max()+1 y_min, y_max = X[:,1].min()-1, X[:,1].max()+1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) pl.set_cmap(pl.cm.Paired) pl.pcolormesh(xx, yy, Z) # Plot also the training points pl.scatter(X[:,0], X[:,1], c=Y) pl.title('3-Class classification using Support Vector Machine with custom kernel') pl.axis('tight') pl.show()