""" ================================ Recognizing hand-written digits ================================ An example showing how the scikit-learn can be used to recognize images of hand-written digits. This example is commented in the :ref:`tutorial section of the user manual `. """ print __doc__ # Author: Gael Varoquaux # License: Simplified BSD # Standard scientific Python imports import pylab as pl # Import datasets, classifiers and performance metrics from scikits.learn import datasets, svm, metrics # The digits dataset digits = datasets.load_digits() # The data that we are interested in is made of 8x8 images of digits, # let's have a look at the first 3 images, stored in the `images` # attribute of the dataset. If we were working from image files, we # could load them using pylab.imread. For these images know which # digit they represent: it is given in the 'target' of the dataset. for index, (image, label) in enumerate(zip(digits.images, digits.target)[:4]): pl.subplot(2, 4, index+1) pl.imshow(image, cmap=pl.cm.gray_r) pl.title('Training: %i' % label) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create a classifier: a support vector classifier classifier = svm.SVC() # We learn the digits on the first half of the digits classifier.fit(data[:n_samples/2], digits.target[:n_samples/2]) # Now predict the value of the digit on the second half: expected = digits.target[n_samples/2:] predicted = classifier.predict(data[n_samples/2:]) print "Classification report for classifier %s:\n%s\n" % ( classifier, metrics.classification_report(expected, predicted)) print "Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted) for index, (image, prediction) in enumerate( zip(digits.images[n_samples/2:], predicted)[:4]): pl.subplot(2, 4, index+5) pl.imshow(image, cmap=pl.cm.gray_r) pl.title('Prediction: %i' % prediction) pl.show()