""" ===================================== Blind source separation using FastICA ===================================== :ref:`ICA` is used to estimate sources given noisy measurements. Imagine 2 instruments playing simultaneously and 2 microphones recording the mixed signals. ICA is used to recover the sources ie. what is played by each instrument. """ print __doc__ import numpy as np import pylab as pl from scikits.learn.decomposition import FastICA ############################################################################### # Generate sample data np.random.seed(0) n_samples = 2000 time = np.linspace(0, 10, n_samples) s1 = np.sin(2*time) # Signal 1 : sinusoidal signal s2 = np.sign(np.sin(3*time)) # Signal 2 : square signal S = np.c_[s1,s2].T S += 0.2*np.random.normal(size=S.shape) # Add noise S /= S.std(axis=1)[:,np.newaxis] # Standardize data # Mix data A = [[1, 1], [0.5, 2]] # Mixing matrix X = np.dot(A, S) # Generate observations # Compute ICA ica = FastICA() S_ = ica.fit(X).transform(X) # Get the estimated sources A_ = ica.get_mixing_matrix() # Get estimated mixing matrix assert np.allclose(X, np.dot(A_, S_)) ############################################################################### # Plot results pl.figure() pl.subplot(3, 1, 1) pl.plot(S.T) pl.title('True Sources') pl.subplot(3, 1, 2) pl.plot(X.T) pl.title('Observations (mixed signal)') pl.subplot(3, 1, 3) pl.plot(S_.T) pl.title('ICA estimated sources') pl.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36) pl.show()