""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print __doc__ # Authors: Mathieu Blondel # License: BSD import numpy as np import pylab as pl from scikits.learn.decomposition import PCA, KernelPCA np.random.seed(0) def genenerate_rings(n_samples=200): x_red = np.random.random((n_samples,)) * 2 - 1 signs_red = np.sign(np.random.random(x_red.shape) - 0.5) y_red = np.sqrt(np.abs(x_red ** 2 - 1)) * signs_red x_blue = np.random.random((n_samples,)) * 6 - 3 signs_blue = np.sign(np.random.random(x_blue.shape) - 0.5) y_blue = np.sqrt(np.abs(x_blue ** 2 - 9)) * signs_blue return np.hstack(([x_red, y_red], [x_blue, y_blue])).T def generate_clusters(n_samples=200): mean1 = np.array([0, 2]) mean2 = np.array([2, 0]) cov = np.array([[2.0, 1.0], [1.0, 2.0]]) X_red = np.random.multivariate_normal(mean1, cov, n_samples) X_blue = np.random.multivariate_normal(mean2, cov, n_samples) return np.vstack((X_red, X_blue)) X = genenerate_rings() #X = generate_clusters() kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results pl.figure() pl.subplot(2, 2, 1, aspect='equal') pl.title("Original space") pl.plot(X[:200, 0], X[:200, 1], "ro") pl.plot(X[200:, 0], X[200:, 1], "bo") pl.xlabel("$x_1$") pl.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-6, 6, 50), np.linspace(-6, 6, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) pl.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') pl.subplot(2, 2, 2, aspect='equal') pl.plot(X_kpca[:200, 0], X_pca[:200, 1], "ro") pl.plot(X_pca[200:, 0], X_pca[200:, 1], "bo") pl.title("Projection by PCA") pl.xlabel("1st principal component") pl.ylabel("2nd component") pl.subplot(2, 2, 3, aspect='equal') pl.plot(X_kpca[:200, 0], X_kpca[:200, 1], "ro") pl.plot(X_kpca[200:, 0], X_kpca[200:, 1], "bo") pl.title("Projection by KPCA") pl.xlabel("1st principal component in space induced by $\phi$") pl.ylabel("2nd component") pl.subplot(2, 2, 4, aspect='equal') pl.plot(X_back[:200, 0], X_back[:200, 1], "ro") pl.plot(X_back[200:, 0], X_back[200:, 1], "bo") pl.title("Original space after inverse transform") pl.xlabel("$x_1$") pl.ylabel("$x_2$") pl.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) pl.show()