""" ============================================================================== Linear Discriminant Analysis & Quadratic Discriminant Analysis with confidence ============================================================================== Plot the decision boundary """ print __doc__ from scipy import linalg import numpy as np import pylab as pl import matplotlib as mpl from matplotlib import colors from scikits.learn.lda import LDA from scikits.learn.qda import QDA ############################################################################### # colormap cmap = colors.LinearSegmentedColormap('red_blue_classes', {'red' : [(0, 1, 1), (1, 0.7, 0.7)], 'green' : [(0, 0.7, 0.7), (1, 0.7, 0.7)], 'blue' : [(0, 0.7, 0.7), (1, 1, 1)] }) pl.cm.register_cmap(cmap=cmap) ############################################################################### # generate datasets def dataset_fixed_cov(): '''Generate 2 Gaussians samples with the same covariance matrix''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -0.23], [0.83, .23]]) X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C) + np.array([1, 1])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y def dataset_cov(): '''Generate 2 Gaussians samples with different covariance matrices''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -1.], [2.5, .7]]) * 2. X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y ############################################################################### # plot functions def plot_data(lda, X, y, y_pred, fig_index): splot = pl.subplot(2, 2, fig_index) if fig_index == 1: pl.title('Linear Discriminant Analysis') pl.ylabel('Fixed covariance') elif fig_index == 2: pl.title('Quadratic Discriminant Analysis') elif fig_index == 3: pl.ylabel('Different covariances') tp = (y == y_pred) # True Positive tp0, tp1 = tp[y == 0], tp[y == 1] X0, X1 = X[y == 0], X[y == 1] X0_tp, X0_fp = X0[tp0], X0[tp0 != True] X1_tp, X1_fp = X1[tp1], X1[tp1 != True] xmin, xmax = X[:, 0].min(), X[:, 0].max() ymin, ymax = X[:, 1].min(), X[:, 1].max() # class 0: dots pl.plot(X0_tp[:, 0], X0_tp[:, 1], 'o', color='red') pl.plot(X0_fp[:, 0], X0_fp[:, 1], '.', color='#990000') # dark red # class 1: dots pl.plot(X1_tp[:, 0], X1_tp[:, 1], 'o', color='blue') pl.plot(X1_fp[:, 0], X1_fp[:, 1], '.', color='#000099') # dark blue # class 0 and 1 : areas nx, ny = 200, 100 x_min, x_max = pl.xlim() y_min, y_max = pl.ylim() xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx), np.linspace(y_min, y_max, ny)) Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()]) Z = Z[:, 1].reshape(xx.shape) pl.pcolormesh(xx, yy, Z, cmap='red_blue_classes', norm=colors.Normalize(0., 1.)) pl.contour(xx, yy, Z, [0.5], linewidths=2., colors='k') # means pl.plot(lda.means_[0][0], lda.means_[0][1], 'o', color='black', markersize=10) pl.plot(lda.means_[1][0], lda.means_[1][1], 'o', color='black', markersize=10) return splot def plot_ellipse(splot, mean, cov, color): v, w = linalg.eigh(cov) u = w[0] / linalg.norm(w[0]) angle = np.arctan(u[1]/u[0]) angle = 180 * angle / np.pi # convert to degrees # filled gaussian at 2 standard deviation ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5, 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) def plot_lda_cov(lda, splot): plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red') plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue') def plot_qda_cov(qda, splot): plot_ellipse(splot, qda.means_[0], qda.covariances_[0], 'red') plot_ellipse(splot, qda.means_[1], qda.covariances_[1], 'blue') ############################################################################### for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]): # LDA lda = LDA() y_pred = lda.fit(X, y, store_covariance=True).predict(X) splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1) plot_lda_cov(lda, splot) pl.axis('tight') # QDA qda = QDA() y_pred = qda.fit(X, y, store_covariances=True).predict(X) splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2) plot_qda_cov(qda, splot) pl.axis('tight') pl.suptitle('LDA vs QDA') pl.show()