""" ==================================================================== Linear and Quadratic Discriminant Analysis with confidence ellipsoid ==================================================================== Plot the confidence ellipsoids of each class and decision boundary """ print __doc__ from scipy import linalg import numpy as np import pylab as pl import matplotlib as mpl from scikits.learn.lda import LDA from scikits.learn.qda import QDA ################################################################################ # load sample dataset from scikits.learn.datasets import load_iris iris = load_iris() X = iris.data[:,:2] # Take only 2 dimensions y = iris.target X = X[y > 0] y = y[y > 0] y -= 1 target_names = iris.target_names[1:] ################################################################################ # LDA lda = LDA() y_pred = lda.fit(X, y, store_covariance=True).predict(X) # QDA qda = QDA() y_pred = qda.fit(X, y, store_covariances=True).predict(X) ############################################################################### # Plot results def plot_ellipse(splot, mean, cov, color): v, w = linalg.eigh(cov) u = w[0] / linalg.norm(w[0]) angle = np.arctan(u[1]/u[0]) angle = 180 * angle / np.pi # convert to degrees # filled gaussian at 2 standard deviation ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5, 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) xx, yy = np.meshgrid(np.linspace(4, 8.5, 200), np.linspace(1.5, 4.5, 200)) X_grid = np.c_[xx.ravel(), yy.ravel()] zz_lda = lda.predict_proba(X_grid)[:,1].reshape(xx.shape) zz_qda = qda.predict_proba(X_grid)[:,1].reshape(xx.shape) pl.figure() splot = pl.subplot(1, 2, 1) pl.contourf(xx, yy, zz_lda > 0.5, alpha=0.5) pl.scatter(X[y==0,0], X[y==0,1], c='b', label=target_names[0]) pl.scatter(X[y==1,0], X[y==1,1], c='r', label=target_names[1]) pl.contour(xx, yy, zz_lda, [0.5], linewidths=2., colors='k') plot_ellipse(splot, lda.means_[0], lda.covariance_, 'b') plot_ellipse(splot, lda.means_[1], lda.covariance_, 'r') pl.legend() pl.axis('tight') pl.title('Linear Discriminant Analysis') splot = pl.subplot(1, 2, 2) pl.contourf(xx, yy, zz_qda > 0.5, alpha=0.5) pl.scatter(X[y==0,0], X[y==0,1], c='b', label=target_names[0]) pl.scatter(X[y==1,0], X[y==1,1], c='r', label=target_names[1]) pl.contour(xx, yy, zz_qda, [0.5], linewidths=2., colors='k') plot_ellipse(splot, qda.means_[0], qda.covariances_[0], 'b') plot_ellipse(splot, qda.means_[1], qda.covariances_[1], 'r') pl.legend() pl.axis('tight') pl.title('Quadratic Discriminant Analysis') pl.show()