""" =============================================================== A demo of structured Ward hierarchical clustering on Lena image =============================================================== Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in order for each segmented region to be in one piece. """ # Author : Vincent Michel, 2010 # Alexandre Gramfort, 2011 # License: BSD Style. print __doc__ import time as time import numpy as np import scipy as sp import pylab as pl from scikits.learn.feature_extraction.image import grid_to_graph from scikits.learn.cluster import Ward ############################################################################### # Generate data lena = sp.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] mask = np.ones_like(lena).astype(bool) X = np.atleast_2d(lena[mask]).T ############################################################################### # Define the structure A of the data. Pixels connected to their neighbors. connectivity = grid_to_graph(*lena.shape) ############################################################################### # Compute clustering print "Compute structured hierarchical clustering..." st = time.time() n_clusters = 15 # number of regions ward = Ward(n_clusters=n_clusters).fit(X, connectivity=connectivity) label = np.reshape(ward.labels_, mask.shape) print "Elaspsed time: ", time.time() - st print "Number of pixels: ", label.size print "Number of clusters: ", np.unique(label).size ############################################################################### # Plot the results on an image pl.figure(figsize=(5, 5)) pl.imshow(lena, cmap=pl.cm.gray) for l in range(n_clusters): pl.contour(label == l, contours=1, colors=[pl.cm.spectral(l/float(n_clusters)), ]) pl.xticks(()) pl.yticks(()) pl.show()