""" ============================= Ledoit-Wolf vs OAS estimation ============================= The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotical optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate. Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are gaussian. This example, inspired from Chen's publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using gaussian distributed data. [1] "Shrinkage Algorithms for MMSE Covariance Estimation" Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. """ print __doc__ import numpy as np import pylab as pl from scipy.linalg import toeplitz, cholesky from scikits.learn.covariance import LedoitWolf, OAS ############################################################################### n_features = 100 # simulation covariance matrix (AR(1) process) r = 0.1 real_cov = toeplitz(r**np.arange(n_features)) coloring_matrix = cholesky(real_cov) n_samples_range = np.arange(6, 31, 1) repeat = 100 lw_mse = np.zeros((n_samples_range.size, repeat)) oa_mse = np.zeros((n_samples_range.size, repeat)) lw_shrinkage = np.zeros((n_samples_range.size, repeat)) oa_shrinkage = np.zeros((n_samples_range.size, repeat)) for i, n_samples in enumerate(n_samples_range): for j in range(repeat): X = np.dot( np.random.normal(size=(n_samples, n_features)), coloring_matrix.T) lw = LedoitWolf(store_precision=False) lw.fit(X, assume_centered=True) lw_mse[i,j] = lw.mse(real_cov) lw_shrinkage[i,j] = lw.shrinkage_ oa = OAS(store_precision=False) oa.fit(X, assume_centered=True) oa_mse[i,j] = oa.mse(real_cov) oa_shrinkage[i,j] = oa.shrinkage_ # plot MSE pl.subplot(2,1,1) pl.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1), label='Ledoit-Wolf', color='g') pl.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1), label='OAS', color='r') pl.ylabel("MSE") pl.legend(loc="upper right") pl.title("Comparison of covariance estimators") pl.xlim(5, 31) # plot shrinkage coefficient pl.subplot(2,1,2) pl.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1), label='Ledoit-Wolf', color='g') pl.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1), label='OAS', color='r') pl.xlabel("n_samples") pl.ylabel("Shrinkage") pl.legend(loc="lower right") pl.ylim(pl.ylim()[0], 1. + (pl.ylim()[1] - pl.ylim()[0])/10.) pl.xlim(5, 31) pl.show()