""" ========================================= SGD: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector Machines classifier trained using SGD. """ print __doc__ import numpy as np import pylab as pl from scikits.learn.linear_model import SGDClassifier # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2,2], np.random.randn(20, 2) + [2, 2]] Y = [0]*20 + [1]*20 # fit the model clf = SGDClassifier(loss="hinge", alpha = 0.01, n_iter=50, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-5, 5, 10) yy = np.linspace(-5, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i,j), val in np.ndenumerate(X1): x1 = val x2 = X2[i,j] p = clf.decision_function([x1, x2]) Z[i,j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed','solid', 'dashed'] colors = 'k' pl.set_cmap(pl.cm.Paired) pl.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) pl.scatter(X[:,0], X[:,1], c=Y) pl.axis('tight') pl.show()