""" =========================================== Finding structure in the stock market =========================================== An example of playing with stock market data to try and find some structure in it. """ print __doc__ # Author: Gael Varoquaux gael.varoquaux@normalesup.org # License: BSD import datetime from matplotlib import finance import numpy as np from scikits.learn import cluster # Choose a time period reasonnably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime.datetime(2003, 01, 01) d2 = datetime.datetime(2008, 01, 01) symbol_dict = { 'TOT' : 'Total', 'XOM' : 'Exxon', 'CVX' : 'Chevron', 'COP' : 'ConocoPhillips', 'VLO' : 'Valero Energy', 'MSFT' : 'Microsoft', 'IBM' : 'IBM', 'TWX' : 'Time Warner', 'CMCSA': 'Comcast', 'CVC' : 'Cablevision', 'YHOO' : 'Yahoo', 'DELL' : 'Dell', 'HPQ' : 'Hewlett-Packard', 'AMZN' : 'Amazon', 'TM' : 'Toyota', 'CAJ' : 'Canon', 'MTU' : 'Mitsubishi', 'SNE' : 'Sony', 'F' : 'Ford', 'HMC' : 'Honda', 'NAV' : 'Navistar', 'NOC' : 'Northrop Grumman', 'BA' : 'Boeing', 'KO' : 'Coca Cola', 'MMM' : '3M', 'MCD' : 'Mc Donalds', 'PEP' : 'Pepsi', 'KFT' : 'Kraft Foods', 'K' : 'Kellogg', 'UN' : 'Unilever', 'MAR' : 'Marriott', 'PG' : 'Procter Gamble', 'CL' : 'Colgate-Palmolive', 'NWS' : 'News Corporation', 'GE' : 'General Electrics', 'WFC' : 'Wells Fargo', 'JPM' : 'JPMorgan Chase', 'AIG' : 'AIG', 'AXP' : 'American express', 'BAC' : 'Bank of America', 'GS' : 'Goldman Sachs', 'AAPL' : 'Apple', 'SAP' : 'SAP', 'CSCO' : 'Cisco', 'TXN' : 'Texas instruments', 'XRX' : 'Xerox', 'LMT' : 'Lookheed Martin', 'WMT' : 'Wal-Mart', 'WAG' : 'Walgreen', 'HD' : 'Home Depot', 'GSK' : 'GlaxoSmithKline', 'PFE' : 'Pfizer', 'SNY' : 'Sanofi-Aventis', 'NVS' : 'Novartis', 'KMB' : 'Kimberly-Clark', 'R' : 'Ryder', 'GD' : 'General Dynamics', 'RTN' : 'Raytheon', 'CVS' : 'CVS', 'CAT' : 'Caterpillar', 'DD' : 'DuPont de Nemours', } symbols, names = np.array(symbol_dict.items()).T quotes = [finance.quotes_historical_yahoo(symbol, d1, d2, asobject=True) for symbol in symbols] #volumes = np.array([q.volume for q in quotes]).astype(np.float) open = np.array([q.open for q in quotes]).astype(np.float) close = np.array([q.close for q in quotes]).astype(np.float) variation = close - open correlations = np.corrcoef(variation) _, labels = cluster.affinity_propagation(correlations) for i in range(labels.max()+1): print 'Cluster %i: %s' % ((i+1), ', '.join(names[labels==i]))