Warning: This documentation is for scikits.learn version 0.8. — Latest stable version

This page

Hierarchical clustering: structured vs unstructured wardΒΆ

Example builds a swiss roll dataset and runs Hierarchical clustering on their position.

In a first step, the hierarchical clustering without connectivity constraints on structure, solely based on distance, whereas in a second step clustering restricted to the k-Nearest Neighbors graph: it’s a hierarchical clustering with structure prior.

Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll.

  • ../../_images/plot_ward_structured_vs_unstructured_1.png
  • ../../_images/plot_ward_structured_vs_unstructured_2.png

Python source code: plot_ward_structured_vs_unstructured.py

# Authors : Vincent Michel, 2010
#           Alexandre Gramfort, 2010
#           Gael Varoquaux, 2010
# License: BSD

print __doc__

import time as time
import numpy as np
import pylab as pl
import mpl_toolkits.mplot3d.axes3d as p3
from scikits.learn.cluster import Ward
from scikits.learn.datasets.samples_generator import swiss_roll

###############################################################################
# Generate data (swiss roll dataset)
n_samples = 1000
noise = 0.05
X, _ = swiss_roll(n_samples, noise)
# Make it thinner
X[:, 1] *= .5

###############################################################################
# Compute clustering
print "Compute unstructured hierarchical clustering..."
st = time.time()
ward = Ward(n_clusters=6).fit(X)
label = ward.labels_
print "Elapsed time: ", time.time() - st
print "Number of points: ", label.size

###############################################################################
# Plot result
fig = pl.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):
    ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2],
              'o', color=pl.cm.jet(np.float(l) / np.max(label + 1)))
pl.title('Without connectivity constraints')


###############################################################################
# Define the structure A of the data. Here a 10 nearest neighbors
from scikits.learn.neighbors import kneighbors_graph
connectivity = kneighbors_graph(X, n_neighbors=10)

###############################################################################
# Compute clustering
print "Compute structured hierarchical clustering..."
st = time.time()
ward = Ward(n_clusters=6).fit(X, connectivity=connectivity)
label = ward.labels_
print "Elapsed time: ", time.time() - st
print "Number of points: ", label.size

###############################################################################
# Plot result
fig = pl.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):
    ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2],
              'o', color=pl.cm.jet(float(l) / np.max(label + 1)))
pl.title('With connectivity constraints')

pl.show()