scikits.learn.pls.PLSSVD¶
- class scikits.learn.pls.PLSSVD(n_components=2, scale=True, copy=True)¶
Partial Least Square SVD
Simply perform a svd on the crosscovariance matrix: X’Y The are no iterative deflation here.
Parameters : X: array-like of predictors, shape (n_samples, p) :
Training vector, where n_samples in the number of samples and p is the number of predictors. X will be centered before any analysis.
Y: array-like of response, shape (n_samples, q) :
Training vector, where n_samples in the number of samples and q is the number of response variables. X will be centered before any analysis.
n_components: int, number of components to keep. (default 2). :
scale: boolean, scale X and Y (default True) :
See also
Attributes
x_weights_: array, [p, n_components] X block weights vectors. y_weights_: array, [q, n_components] Y block weights vectors. x_scores_: array, [n_samples, n_components] X scores. y_scores_: array, [n_samples, n_components] Y scores. Methods
- __init__(n_components=2, scale=True, copy=True)¶
- transform(X, Y=None)¶
Apply the dimension reduction learned on the train data.