""" ========================================= Segmenting the picture of Lena in regions ========================================= This example uses :ref:`spectral_clustering` on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts. There are two options to assign labels: * with 'kmeans' spectral clustering will cluster samples in the embedding space using a kmeans algorithm * whereas 'discrete' will iteratively search for the closest partition space to the embedding space. """ print(__doc__) # Author: Gael Varoquaux , Brian Cheung # License: BSD 3 clause import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering lena = sp.misc.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(lena) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 5 eps = 1e-6 graph.data = np.exp(-beta * graph.data / lena.std()) + eps # Apply spectral clustering (this step goes much faster if you have pyamg # installed) N_REGIONS = 11 ############################################################################### # Visualize the resulting regions for assign_labels in ('kmeans', 'discretize'): t0 = time.time() labels = spectral_clustering(graph, n_clusters=N_REGIONS, assign_labels=assign_labels, random_state=1) t1 = time.time() labels = labels.reshape(lena.shape) plt.figure(figsize=(5, 5)) plt.imshow(lena, cmap=plt.cm.gray) for l in range(N_REGIONS): plt.contour(labels == l, contours=1, colors=[plt.cm.spectral(l / float(N_REGIONS)), ]) plt.xticks(()) plt.yticks(()) plt.title('Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))) plt.show()