3.2.4.1.7. sklearn.linear_model.MultiTaskLassoCV

class sklearn.linear_model.MultiTaskLassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic')[source]

Multi-task L1/L2 Lasso with built-in cross-validation.

The optimization objective for MultiTaskLasso is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters:

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

alphas : array-like, optional

List of alphas where to compute the models. If not provided, set automaticlly.

n_alphas : int, optional

Number of alphas along the regularization path

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

max_iter : int, optional

The maximum number of iterations.

tol : float, optional

The tolerance for the optimization: if the updates are smaller than tol, the optimization code checks the dual gap for optimality and continues until it is smaller than tol.

cv : integer or cross-validation generator, optional

If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the sklearn.cross_validation module for the list of possible objects.

verbose : bool or integer

Amount of verbosity.

n_jobs : integer, optional

Number of CPUs to use during the cross validation. If -1, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given.

selection : str, default ‘cyclic’

If set to ‘random’, a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to ‘random’) often leads to significantly faster convergence especially when tol is higher than 1e-4.

random_state : int, RandomState instance, or None (default)

The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to ‘random’.

Attributes:

intercept_ : array, shape (n_tasks,)

Independent term in decision function.

coef_ : array, shape (n_tasks, n_features)

Parameter vector (W in the cost function formula).

alpha_ : float

The amount of penalization chosen by cross validation

mse_path_ : array, shape (n_alphas, n_folds)

mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,)

The grid of alphas used for fitting.

n_iter_ : int

number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha.

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array.

Methods

decision_function(*args, **kwargs) DEPRECATED: and will be removed in 0.19.
fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y[, eps, n_alphas, alphas, ...]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of this estimator.
__init__(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic')[source]
decision_function(*args, **kwargs)[source]

DEPRECATED: and will be removed in 0.19.

Decision function of the linear model.

Parameters:

X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns:

C : array, shape = (n_samples,)

Returns predicted values.

fit(X, y)[source]

Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters:

X : {array-like}, shape (n_samples, n_features)

Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params : mapping of string to any

Parameter names mapped to their values.

static path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params)[source]

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters:

X : {array-like, sparse matrix}, shape (n_samples, n_features)

Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output then X can be sparse.

y : ndarray, shape (n_samples,), or (n_samples, n_outputs)

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

coef_init : array, shape (n_features, ) | None

The initial values of the coefficients.

verbose : bool or integer

Amount of verbosity.

params : kwargs

keyword arguments passed to the coordinate descent solver.

positive : bool, default False

If set to True, forces coefficients to be positive.

return_n_iter : bool

whether to return the number of iterations or not.

Returns:

alphas : array, shape (n_alphas,)

The alphas along the path where models are computed.

coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)

Coefficients along the path.

dual_gaps : array, shape (n_alphas,)

The dual gaps at the end of the optimization for each alpha.

n_iters : array-like, shape (n_alphas,)

The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha.

Notes

See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[ 0.          0.          0.46874778]
 [ 0.2159048   0.4425765   0.23689075]]
>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
...                                             coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[ 0.          0.          0.46915237]
 [ 0.2159048   0.4425765   0.23668876]]
predict(X)[source]

Predict using the linear model

Parameters:

X : {array-like, sparse matrix}, shape = (n_samples, n_features)

Samples.

Returns:

C : array, shape = (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)[source]

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.

Parameters:

X : array-like, shape = (n_samples, n_features)

Test samples.

y : array-like, shape = (n_samples) or (n_samples, n_outputs)

True values for X.

sample_weight : array-like, shape = [n_samples], optional

Sample weights.

Returns:

score : float

R^2 of self.predict(X) wrt. y.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns:self :